PN2 Aerospace Grade Meta-Aramid Fiber Honeycomb

Description:
PN2 aerospace grade aramid fiber honeycomb exhibits outstanding flammability properties. It is manufactured from Meta-Aramid paper and coated with a heat resistant phenolic resin.

Applications:
PN2 honeycomb uses include aircraft galleys, flooring, partitions, aircraft leading and trailing edges, missile wings, radomes, antennas, military shelters, fuel tanks, helicopter rotor blades and navy bulkhead joiner panels.

Features:
- Fire resistant (self extinguishing)
- High strength to weight ratio
- Corrosion resistant
- Excellent dielectric properties
- Thermally insulating
- High toughness
- Excellent creep and fatigue performance
- Good thermal stability
- Densities as low as 1.5 lb/ft³ (24 kg/m³)
- Over expanded cell configuration suitable for forming simple curves
- Compatible with most adhesives used in sandwich composites
- Long shelf life. The mechanical properties referenced are maintained for 10 years minimum if not exposed to moisture, weather or any normal hazard.

Availability:
PN2 honeycomb is available in sheets, blocks or cut to size pieces in both regular hexagonal and over expanded (OV) cell configurations.

Cell Sizes: 1/8" - 3/8"
Densities: 1.8 pcf - 9.0 pcf
Sheet “Ribbon” (L): 48’ typical
Sheet “Transverse” (W): 96’ typical
Tolerances:
Length: + 3”, - 0” (60” for OV)
Width: + 6”, - 0”
Thickness: ± .006” (under 2” thick)
Density: ± 10%
Cell Size: ± 10%

NOTE: Special dimensions, sizes, tolerances and specifications can be provided upon request.
PN2 aerospace grade Meta-Aramid fiber honeycomb is specified as follows:

Material - Cell Size - Density - Cell Configuration

Designates aerospace grade Meta-Aramid fiber

The nominal density in pounds per cubic foot

Example: **PN2 - 3/16 - 3.0 - OV**

Cell size in inches | Over expanded cells

Material - Cell Size - Density - Cell Configuration

Additional densities and configurations available upon request.

Tested at 0.500"T per AMS STD 401 at room temperature. The above data is based on various sample sizes and is for reference only.

PN2 Meta-Aramid Mechanical Properties

<table>
<thead>
<tr>
<th>CELL SIZE</th>
<th>NOMINAL DENSITY</th>
<th>COMPRESSIVE STRENGTH (BARE)</th>
<th>PLATE SHEAR STRENGTH</th>
<th>PLATE SHEAR MODULUS</th>
<th>PLATE SHEAR STRENGTH</th>
<th>PLATE SHEAR MODULUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Typical</td>
<td>Minimum</td>
<td>Typical</td>
<td>Minimum</td>
<td>Typical</td>
</tr>
<tr>
<td>in</td>
<td>mm</td>
<td>psi</td>
<td>Mpa</td>
<td>psi</td>
<td>Mpa</td>
<td>psi</td>
</tr>
<tr>
<td>1/8</td>
<td>0.13</td>
<td>29</td>
<td>70</td>
<td>0.48</td>
<td>87</td>
<td>65</td>
</tr>
<tr>
<td>3/16</td>
<td>0.063</td>
<td>32</td>
<td>114</td>
<td>0.79</td>
<td>107</td>
<td>69</td>
</tr>
<tr>
<td>1/4</td>
<td>0.123</td>
<td>37</td>
<td>137</td>
<td>0.94</td>
<td>126</td>
<td>73</td>
</tr>
<tr>
<td>3/8</td>
<td>0.188</td>
<td>48</td>
<td>180</td>
<td>1.24</td>
<td>196</td>
<td>162</td>
</tr>
<tr>
<td>1/2</td>
<td>0.247</td>
<td>64</td>
<td>330</td>
<td>2.28</td>
<td>266</td>
<td>225</td>
</tr>
<tr>
<td>5/8</td>
<td>0.309</td>
<td>72</td>
<td>450</td>
<td>3.10</td>
<td>291</td>
<td>200</td>
</tr>
<tr>
<td>3/4</td>
<td>0.385</td>
<td>80</td>
<td>600</td>
<td>4.14</td>
<td>319</td>
<td>235</td>
</tr>
<tr>
<td>1/8</td>
<td>0.13</td>
<td>96</td>
<td>1113</td>
<td>7.67</td>
<td>390</td>
<td>260</td>
</tr>
<tr>
<td>5/32</td>
<td>0.063</td>
<td>128</td>
<td>1766</td>
<td>12.18</td>
<td>422</td>
<td>355</td>
</tr>
<tr>
<td>1/4</td>
<td>0.13</td>
<td>144</td>
<td>2250</td>
<td>15.51</td>
<td>445</td>
<td>307</td>
</tr>
<tr>
<td>3/16</td>
<td>0.063</td>
<td>162</td>
<td>300</td>
<td>4.00</td>
<td>396</td>
<td>273</td>
</tr>
<tr>
<td>1/8</td>
<td>0.13</td>
<td>199</td>
<td>600</td>
<td>4.14</td>
<td>319</td>
<td>235</td>
</tr>
<tr>
<td>3/32</td>
<td>0.063</td>
<td>232</td>
<td>1200</td>
<td>9.63</td>
<td>422</td>
<td>355</td>
</tr>
<tr>
<td>1/16</td>
<td>0.063</td>
<td>278</td>
<td>1800</td>
<td>14.17</td>
<td>445</td>
<td>307</td>
</tr>
<tr>
<td>3/64</td>
<td>0.063</td>
<td>316</td>
<td>2400</td>
<td>19.72</td>
<td>445</td>
<td>307</td>
</tr>
<tr>
<td>1/32</td>
<td>0.063</td>
<td>354</td>
<td>3000</td>
<td>25.29</td>
<td>445</td>
<td>307</td>
</tr>
<tr>
<td>1/64</td>
<td>0.063</td>
<td>392</td>
<td>3600</td>
<td>30.84</td>
<td>445</td>
<td>307</td>
</tr>
<tr>
<td>1/128</td>
<td>0.063</td>
<td>430</td>
<td>4200</td>
<td>36.39</td>
<td>445</td>
<td>307</td>
</tr>
</tbody>
</table>

Additional densities and configurations available upon request.

Corporate Headquarters

Plascore Incorporated
615 N. Fairview St.
Zeeland, MI 49464-0170
Phone (616) 772-1220
Toll Free (800) 630-9257
Fax (616) 772-1289
Email sales@plascore.com
Web www.plascore.com

Europe

Plascore GmbH&CoKG
Feldborn 6
D-55444 Waldlaubersheim
Germany
Phone +49(0) 6707-9143 0
Fax +49(0) 6707-9143 40
Email sales.europe@plascore.de
Web www.plascore.de

© 2021 Plascore, Inc. All Rights Reserved. Rev 4.6.2021