A full product listing can be found at www.plascore.com

PK2 Kevlar® N636 Para-Aramid Fiber Honeycomb
Manufactured with para-aramid fiber paper (DuPont Kevlar® N636 or equivalent) coated with a heat resistant phenolic resin. Exhibits improved performance characteristics over Nomex®.
• Up to 40% higher properties than Nomex® honeycomb
• Improved shear strength and modulus
• Extremely high strength to weight ratio
• Excellent thermal and moisture stability
• Conforms to stringent smoke, toxicity and flammability standards

PN2 Aerospace Grade Aramid Fiber Honeycomb
Manufactured from DuPont Nomex® paper (or equivalent) and coated with a heat resistant phenolic resin.
• High strength to weight ratio
• Fire resistant (self extinguishing)
• Corrosion resistant, thermally insulating
• Excellent dielectric properties
• Excellent creep and fatigue performance
• High thermal conductivity
• Flame resistant and fungi resistant
• Superior strength over commercial grade aluminum honeycomb

PN1 Commercial Grade Aramid Fiber Honeycomb
Manufactured from DuPont Nomex® paper (or equivalent) and coated with a heat resistant phenolic resin.
• High strength to weight ratio
• Fire resistant (self extinguishing)
• Corrosion resistant, thermally insulating
• Excellent dielectric properties
• Excellent creep and fatigue performance
• Over expanded cell configuration suitable for forming simple curves
• Compatible with most adhesives

PAMG 5052 Aluminum Honeycomb
Made from 5052 aluminum alloy foil and meets all the requirements of AMS(MIL)-C-7438.
• Available with XR1 or PA3 coating
• High strength to weight ratio
• Elevated use temperatures
• High thermal conductivity
• Excellent moisture and corrosion resistance
• Flame resistant and fungi resistant
• Superior strength over commercial grade aluminum honeycomb

PAMG 5056 Aluminum Honeycomb
Made from 5056 aluminum alloy foil and meets all the requirements of AMS(MIL)-C-7438.
• Available with XR1 or PA3 coating
• High strength to weight ratio
• Elevated use temperatures
• High thermal conductivity
• Excellent moisture and corrosion resistance
• Flame resistant and fungi resistant
• Superior strength over 5052 and commercial grade aluminum honeycomb

PAHD 5052 Aluminum Honeycomb
Made from 5052 aluminum alloy foil and can be tested in accordance with customer requirements.
• Available with XR1 or PA3 coating
• Elevated use temperatures
• High thermal conductivity
• Flame resistant
• Machinable
• Roll formable

PC2 Polycarbonate Honeycomb
PC2 polycarbonate honeycomb exhibits a unique cell structure. The core has 3 orientations vs. the 2 orientations common with other honeycomb, making its properties more uniform. Each cell has a tubular form and is inherently stable.
• Excellent dielectric properties
• Good thermal and electric insulator
• Conductive grades available
• Fire, corrosion and fungi resistant
• Sandwich skins can be melted to core
• Use temperatures below 200°F
• Small cell sizes at high densities
• Available transparent and in colors

PP Polypropylene Honeycomb
Supplied with or without a non-woven polyester veil for better bonding. It is also supplied with or without a film barrier under the polyester veil to limit the amount of resin consumption.
• High strength to weight ratio
• Corrosion, fungi, rot, chemical and moisture resistant
• Sound and vibration dampening
• Energy absorbing
• Thermoformable
• Temperature use to 180°F
• Recyclable
PAMG 5052 Typical Mechanical Properties

<table>
<thead>
<tr>
<th>PLASCORE® HONEYCOMB DESIGNATION</th>
<th>COMPRESSION MODULUS (KSI)</th>
<th>PLATE SHEAR “L” DIRECTION</th>
<th>PLATE SHEAR “W” DIRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELL SIZE</td>
<td>Foam Type</td>
<td>STRENGTH (PSI)</td>
<td>MIN</td>
</tr>
<tr>
<td>3/16</td>
<td>.002</td>
<td>6.3</td>
<td>140</td>
</tr>
<tr>
<td>3/16</td>
<td>.0015</td>
<td>5.9</td>
<td>140</td>
</tr>
<tr>
<td>1/4</td>
<td>.001</td>
<td>5.4</td>
<td>130</td>
</tr>
<tr>
<td>1/4</td>
<td>.0007</td>
<td>3.1</td>
<td>120</td>
</tr>
<tr>
<td>1/8</td>
<td>.001</td>
<td>4.5</td>
<td>100</td>
</tr>
<tr>
<td>1/8</td>
<td>.0007</td>
<td>2.6</td>
<td>100</td>
</tr>
<tr>
<td>3/16</td>
<td>.002</td>
<td>5.7</td>
<td>150</td>
</tr>
</tbody>
</table>

PAHD Typical Mechanical Properties

<table>
<thead>
<tr>
<th>PLASCORE® HONEYCOMB DESIGNATION</th>
<th>COMPRESSION MODULUS (PSI)</th>
<th>STRENGTH (PSI)</th>
<th>CRUSH STRENGTH (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELL SIZE</td>
<td>Foam Type</td>
<td>TYP</td>
<td>MIN</td>
</tr>
</tbody>
</table>

PC2 Polycarbonate Mechanical Properties

<table>
<thead>
<tr>
<th>PLASCORE® HONEYCOMB DESIGNATION</th>
<th>COMPRESSION MODULUS (KSI)</th>
<th>PLATE SHEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELL SIZE</td>
<td>Foam Type</td>
<td>TYP</td>
</tr>
</tbody>
</table>

PP Honeycomb Core Mechanical Properties

<table>
<thead>
<tr>
<th>PLASCORE® HONEYCOMB DESIGNATION</th>
<th>COMPRESSION MODULUS (KSI)</th>
<th>PLATE SHEAR “W” DIRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELL SIZE</td>
<td>Foam Type</td>
<td>TYP</td>
</tr>
</tbody>
</table>

Plascore, Inc. employs a quality management system that is ISO 9001 and ISO 14001 certified.

IMPORTANT NOTICE: The information contained in these materials regarding Plascore’s products, processes, or equipment, is intended to be up to date, accurate, and complete. However, Plascore cannot warrant that this is always the case. Accordingly, it is a purchaser’s or user’s responsibility to perform sufficient testing and evaluation to determine the suitability of Plascore’s products for a particular purpose. Information in these materials and product specifications does not constitute an offer to sell. Your submission of an order to Plascore constitutes an offer to purchase which, if accepted by Plascore, shall be subject to Plascore’s terms and conditions of sale. PLASCORE MAKES NO WARRANTIES OF ANY KIND REGARDING THESE MATERIALS OR INFORMATION, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Plascore owns and shall retain all worldwide rights to its intellectual property, and any other trademarks used in these materials are the property of their respective owners. The information in these materials shall not be construed as an inducement, permission, or recommendation to infringe any patent or other intellectual property rights of any third parties.